G06V 10/30

Definition

Diese Klassifikationsstelle umfasst:

Verfahren zur Rauschunterdrückung oder Filterung wie Schwellenwertbildung im Frequenzbereich (z.B. nach einer Fourier- oder Wavelet-Transformation), kantenerhaltende Glättungsverfahren wie anisotrope Diffusion (auch Perona-Malik-Diffusion genannt) oder Deep-Learning-Ansätze zur Bildentrauschung, z.B. unter Verwendung von neuronalen Faltungsnetzwerken [Convolutional Neural Networks, CNN].

Lineare Glättungsfilter (z.B. zur Faltung des Originalbildes mit einem Tiefpassfilter wie einem Gauß-Filterkern oder zur Anwendung eines Wiener-Filters) und nichtlineare Filterung wie Medianfilterung oder bilaterale Filterung (siehe auch die Gruppe G06V 10/36), wenn sie zur Rauschunterdrückung eingesetzt werden.

Verfahren zur Rauschabschätzung [Noise Estimation] auf der Grundlage eines Referenzbildes, wobei das Referenzbild Folgendes sein kann:

Abschätzung von Rauschparametern auf der Grundlage unterschiedlicher Rauschmodelle, z.B. additives weißes gaußsches Rauschen, Lichtgranulation [Speckle Noise] usw.

Erkennung von Unschärfe oder Defokussierung des Bildmusters.

Beispiele

Bildreferenz:G06V0010300000_0



Rauschunterdrückung bei Gesichtsbildern.

Bildreferenz:G06V0010300000_1



Entrauschen von (abgebildeten) Gesichtern mittels einer Autoencoder-CNN-Architektur (oben), gefolgt von einer Gesichtserkennung durch eine Diskriminator-Architektur (unten).

Bildreferenz:G06V0010300000_2



Querverweise

Informative Querverweise

Ausrichten oder Zentrieren sowie Erkennen oder Korrigieren der Orientierung zum Erkennen oder Verstehen von Bildern oder Videos
G06V 10/24
Segmentierung von Mustern im Bildfeld
G06V 10/26
Lokale Bildoperatoren zum Erkennen oder Verstehen von Bildern oder Videos, z.B. Medianfilterung
G06V 10/36
Verbesserung oder Wiederherstellung für die Bildverarbeitung allgemein
G06T 5/00

Glossar

DCT

diskrete Kosinustransformation [Discrete Cosine Transform].

FFT

schnelle Fourier-Transformation [Fast Fourier Transform].

PDF

Wahrscheinlichkeitsdichtefunktion [Probability Density Function].

SNR

Signal-Rausch-Verhältnis [Signal-to-Noise Ratio].

G06V 10/30

Definition Statement

This place covers:

Techniques for noise removal or filtering such as thresholding in the frequency domain (e.g. after a Fourier or wavelet transform), edge-preserving smoothing techniques such as anisotropic diffusion (also called Perona-Malik diffusion), or deep learning approaches to image denoising, e.g. using convolutional neural networks (CNN’s).

Linear smoothing filters (e.g. for convolving the original image with a low-pass filter such as a Gaussian kernel matrix or applying a Wiener filter) and non-linear filtering such as median filtering or bilateral filtering (see also group G06V 10/36), when applied for the purpose of noise removal.

Noise estimation techniques based on a reference image, wherein the reference image may be:

Estimation of noise parameters based on different noise models, e.g. additive white Gaussian noise, speckle noise, etc.

Detection of blur or defocusing of the image pattern.

Examples

Bildreferenz:G06V0010300000_0



Face image denoising

Bildreferenz:G06V0010300000_1



Face denoising using an autoencoder convolutional neural network architecture (above), followed by face recognition using a discriminator architecture (below)

Bildreferenz:G06V0010300000_2



References

Informative references

Aligning, centring, orientation detection or correction for image or video recognition or understanding
G06V 10/24
Segmentation of patterns in the image field
G06V 10/26
Local image operators for image or video recognition or understanding, e.g. median filtering
G06V 10/36
Enhancement or restoration for general image processing
G06T 5/00

Glossary

DCT

discrete cosine transform

FFT

fast Fourier transform

PDF

probability density function

SNR

signal to noise ratio