Hauptinhalt

Bibliografische Daten

Dokument WO002018188772A1 (Seiten: 84)

Bibliografische Daten Dokument WO002018188772A1 (Seiten: 84)
INID Kriterium Feld Inhalt
54 Titel TI [EN] ZNO NANOPARTICLE COATED EXFOLIATED GRAPHITE COMPOSITE, METHOD OF PRODUCING COMPOSITE AND USE IN LI-ION BATTERY
[FR] COMPOSITE DE GRAPHITE EXFOLIÉ REVÊTU DE NANOPARTICULES DE ZNO, PROCÉDÉ DE PRODUCTION DE COMPOSITE ET SON UTILISATION DANS UNE BATTERIE LI-ION
71/73 Anmelder/Inhaber PA ECKART GMBH, DE
72 Erfinder IN ISAKIN OLGA, DE ; MOOS RALF, DE ; SCHINDLER KERSTIN, DE ; SCHNEIDER RALPH, DE ; WILLERT-PORADA MONIKA
22/96 Anmeldedatum AD 21.12.2017
21 Anmeldenummer AN 2017084117
Anmeldeland AC EP
Veröffentlichungsdatum PUB 18.10.2018
33
31
32
Priorität PRC
PRN
PRD
EP
17000646
20170413
51 IPC-Hauptklasse ICM H01M 4/131 (2010.01)
51 IPC-Nebenklasse ICS H01G 11/24 (2013.01)
H01G 11/32 (2013.01)
H01G 11/36 (2013.01)
H01G 9/20 (2006.01)
H01M 4/04 (2006.01)
H01M 4/133 (2010.01)
H01M 4/36 (2006.01)
H01M 4/48 (2010.01)
IPC-Zusatzklasse ICA
IPC-Indexklasse ICI
Gemeinsame Patentklassifikation CPC H01G 11/24
H01G 11/32
H01G 11/36
H01G 11/46
H01G 9/2022
H01M 10/0525
H01M 2004/021
H01M 2004/027
H01M 4/0404
H01M 4/131
H01M 4/133
H01M 4/364
H01M 4/366
H01M 4/48
H01M 4/483
H01M 4/587
H01M 4/62
H01M 4/625
Y02E 10/542
Y02E 60/10
MCD-Hauptklasse MCM H01M 4/131 (2010.01)
MCD-Nebenklasse MCS H01G 11/24 (2013.01)
H01G 11/32 (2013.01)
H01G 11/36 (2013.01)
H01G 9/20 (2006.01)
H01M 4/04 (2006.01)
H01M 4/133 (2010.01)
H01M 4/36 (2006.01)
H01M 4/48 (2010.01)
MCD-Zusatzklasse MCA
57 Zusammenfassung AB [EN] Composites comprising an exfoliated graphite support material having a degree of graphitization g in an range of 50 to 93 %, obtained by XRD Rietveld analysis, which is coated with ZnO nanoparticles. These composites are produced by three different methods: A) (syn) the method comprises the following consecutive steps: i) a Zn(II)salt is dissolved in a solvent ii) graphite and a base are added simultaneously iii) the mixture is stirred under impact of ultrasound iv) the solvent is removed from the suspension or B) (pre) the method comprises the following consecutive steps: i) graphite is suspended in a solvent and exfoliated via impact of ultrasound ii) a Zn(II)salt and a base are added simultaneously forming nano-ZnO particles iii) the mixture is stirred iv) the solvent is removed from the suspension or C) (post) the method comprises the following steps: i) a Zn(II)salt and a base are mixed in a solvent in a first reactor forming nano-ZnO particles ii) graphite is exfoliated via impact of ultrasound in a second reactor iii) both suspensions of i) and ii) are mixed together iv) after step iii) the solvent is removed from the suspension. These coated composites may be tempered in a further step and again coated and again tempered.
[FR] L'invention concerne des composites comprenant un matériau support en graphite exfolié présentant un degré de graphitisation g compris dans la plage de 50 à 93 %, obtenu par une analyse de Rietveld XRD, ledit composite étant revêtu de nanoparticules de ZnO. Ces composites sont produits par trois procédés différents : a) (syn) le procédé comprend les étapes consécutives suivantes : i) dissoudre un sel de Zn(II) dans un solvant, ii) ajouter simultanément du graphite et une base, iii) agiter le mélange soumis à un impact d'ultrasons, iv) extraire le solvant de la suspension ; ou B) (pre) le procédé comprend les étapes consécutives suivantes : i) mettre en suspension le graphite dans un solvant et l'exfolier par l'impact d'ultrasons, ii) ajouter simultanément un sel de Zn(II) et une base pour former des particules de nano-ZnO, iii) agiter le mélange, iv) extraire le solvant de la suspension ; ou C) (post) le procédé comprend les étapes suivantes : i) mélanger un sel de Zn(II) et une base dans un solvant dans un premier réacteur pour former des particules de nano-ZnO, ii) exfolier le graphite par l'impact d'ultrasons dans un second réacteur, iii) mélanger les deux suspensions de i) et ii) ; iv) après l'étape iii), extraire le solvant de la suspension. Ces composites revêtus peuvent être recuits dans une autre étape, puis revêtus à nouveau et recuits à nouveau.
56 Entgegengehaltene Patentdokumente/Zitate,
in Recherche ermittelt
CT US020110292570A1
56 Entgegengehaltene Patentdokumente/Zitate,
vom Anmelder genannt
CT CN000103734188A
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
in Recherche ermittelt
CTNP HSIEH CHIEN-TE ET AL: "Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries", ELECTROCHIMICA ACTA, vol. 111, 8 August 2013 (2013-08-08), pages 359 - 365, XP028768502, ISSN: 0013-4686, DOI: 10.1016/J.ELECTACTA.2013.07.197 7;
HUMMERS W S ET AL: "Preparation of graphite oxide", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, US, vol. 80, no. 6, 20 March 1958 (1958-03-20), pages 1339, XP008127696, ISSN: 0002-7863 7;
SONG NA ET AL: "Reduced graphene oxide/ZnO nanohybrids: Metallic Zn powder induced one-step synthesis for enhanced photocurrent and photocatalytic response", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 353, 22 June 2015 (2015-06-22), pages 580 - 587, XP029270106, ISSN: 0169-4332, DOI: 10.1016/J.APSUSC.2015.06.062 7;
ZHANG Y ET AL: "Capacitive behavior of graphene-ZnO composite film for supercapacitors", JOURNAL OF ELECTROANALYTICAL CHEMISTRY AND INTERFACIAL ELECTROCHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 634, no. 1, 18 July 2009 (2009-07-18), pages 68 - 71, XP026500879, ISSN: 0022-0728, [retrieved on 20090718], DOI: 10.1016/J.JELECHEM.2009.07.010 7
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
vom Anmelder genannt
CTNP BIRROZZI, A.; RACCICHINI, R.; NOBILI, F.; MARINARO, M.; TOSSICI, R.; MARASSI, R.: "High-stability graphene nano sheets/Sn0 composite anode for lithium ion batteries", ELECTROCHIM. ACTA, vol. 137, 2014, pages 228 - 234 1;
BOURLINOS, A. B.; GOURNIS, D.; PETRIDIS, D.; SZABO, T.; SZERI, A.; DEKANY, I.: "Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids", LANGMUIR, vol. 19, no. 15, 2003, pages 6050 - 6055, XP055131524, DOI: doi:10.1021/la026525h 1;
D.W. BAHNEMANN; C. KORMANN; M.R. HOFFMANN: "Preparation and Characterization of Quantum Size Zinc-Oxide - A detailed Spectroscopic Study", J. PHYS. CHEM., vol. 91, no. 14, 1987, pages 3789 - 3798, XP002423144, DOI: doi:10.1021/j100298a015 1;
E. QUATRARONE; V. DALL'ASTA; A. RESMINI; C. TEALDI; I. G. TREDICI; U. A. TAMBURINI; P. MUSTARELLI, JOURNAL OF POWER SOURCES, vol. 320, 2016, pages 314 - 321 1;
E.A: MEULENKAMP: "Synthesis and growth of ZnO nanoparticles", J. PHYS. CHEM. B, vol. 102, no. 29, 1998, pages 5566 - 5572, XP009073795, DOI: doi:10.1021/jp980730h 1;
GILJE, S.; HAN, S.; WANG, M.; WANG, K. L.; KANER, R. B.: "A chemical route to graphene for device applications", NANO LETT., vol. 7, no. 11, 2007, pages 3394 - 3398, XP055005628, DOI: doi:10.1021/nl0717715 1;
GUO, R.; YUE, W. B.; AN, Y. M.; REN, Y.; YAN, X.: "Graphene-encapsulated porous carbon-ZnO composites as high-performance anode materials for Li-ion batteries", ELECTROCHIM. ACTA, vol. 135, 2014, pages 161 - 167, XP028860018, DOI: doi:10.1016/j.electacta.2014.04.160 1;
HONG, W.; LI, L. Z.; XUE, R. N.; XU, X. Y.; WANG, H.; ZHOU, J. K.; ZHAO, H. L.; SONG, Y. H.; LIU, Y.; GAO, J. P.: "One-pot hydrothermal synthesis of Zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 485, 2017, pages 175 - 182 1;
HSIEH, C. T.; LIN, C. Y.; CHEN, Y. F.; LIN, J. S.: "Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries", ELECTROCHIM. ACTA, vol. 111, 2013, pages 359 - 365 1;
JIAN ZHANG; PENG GU; JING XU; HUAIGUO XUE; HUAN PANG, NANOSCALE, vol. 8, 2016, pages 18578 - 18595 1;
L. SPIE&Bgr;; G. TEICHERT; R. SCHWARZER; H. BEHNKEN; C. GENZEL, MODERNE RONTGENBEUGUNG, 2009 1;
N. SON; H. FAN; H. TIAN, APPLIED SURFACE SCIENCE, vol. 353, 2015, pages 580 - 587 1;
SANKAPAL, B. R.; GAJARE, H. B.; KARADE, S. S.; SALUNKHE, R. R.; DUBAI, D. P.: "Zinc Oxide Encapsulated Carbon Nanotube Thin Films for Energy Storage Applications", ELECTROCHIM. ACTA, vol. 192, 2016, pages 377 - 384, XP029433768, DOI: doi:10.1016/j.electacta.2016.01.193 1;
SCHAAF, P.; TALBOT, J.: "Surface Exclusion Effects in Adsorption Processes", J. CHEM. PHYS., vol. 91, no. 7, 1989, pages 4401 - 4409 1;
SCHAAF, P.; VOEGEL, J. C.; SENGER, B.: "From random sequential adsorption to ballistic deposition: A general view of irreversible deposition processes", J. PHYS. CHEM. B, vol. 104, no. 10, 2000, pages 2204 - 2214 1;
SHIH, Y. T.; WU, C. H.; HUNG, F. Y.; LUI, T. S.; CHEN, L. H.: "A study at room temperature and 55 degrees C on the charge-discharge characteristics of Si(ioo x)Alx thin film anode for Li-ion batteries", SURFACE & COATINGS TECHNOLOGY, vol. 215, 2013, pages 79 - 84 1;
SONG, N.; FAN, H. Q.; TIAN, H. L.: "Reduced graphene oxide/ZnO nanohybrids: Metallic Zn powder induced one-step synthesis for enhanced photocurrent and photocatalytic response", APPL. SURF. SCI., vol. 353, 2015, pages 580 - 587, XP029270106, DOI: doi:10.1016/j.apsusc.2015.06.062 1;
SONG, W. T.; XIE, J.; LIU, S. Y.; ZHENG, Y. X.; CAO, G. S.; ZHU, T. J.; ZHAO, X. B.: "Graphene Decorated with ZnO Nanocrystals with Improved Electrochemical Properties Prepared by a Facile In Situ Hydrothermal Route", INT. J. ELECTROCHEM. SCI., vol. 7, no. 3, 2012, pages 2164 - 2174 1;
SU, Q. M.; DONG, Z. M.; ZHANG, J.; DU, G. H.; XU, B. S.: "Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: two reaction modes are revealed", NANOTECHNOLOGY, vol. 24, no. 25, 2013, XP020246484, DOI: doi:10.1088/0957-4484/24/25/255705 1;
SUN, X.; ZHOU, C. G.; XIE, M.; SUN, H. T.; HU, T.; LU, F. Y.; SCOTT, S. M.; GEORGE, S. M.; LIAN, J.: "Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity", J. MATER. CHEM. A, vol. 2, no. 20, 2014, pages 7319 - 7326 1;
V.A: DAVYDOV; A.V: RAKHMANINA; V. AGAFONOV; B. NARYMBETOV; J.P. BOUDOU; H. SZWARC: "Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures", CARBON, vol. 42, no. 2, 2004, pages 261 - 269, XP004483336, DOI: doi:10.1016/j.carbon.2003.10.026 1;
WU, J.; CHEN, C. H.; HAO, Y.; WANG, C. L.: "Enhanced electrochemical performance of nano sheet ZnO/reduced graphene oxide composites as anode for lithium-ion batteries", COLLOID SURF. A-PHYSICOCHEM. ENG. ASP., vol. 468, 2015, pages 17 - 21 1;
YOON, Y. S.; JEE, S. H.; LEE, S. H.; NAM, S. C.: "Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries", SURFACE & COATINGS TECHNOLOGY, vol. 206, no. 2-3, 2011, pages 553 - 558, XP028283884, DOI: doi:10.1016/j.surfcoat.2011.07.076 1;
ZHANG, Y. P.; LI, H. B.; PAN, L. K.; LU, T.; SUN, Z.: "Capacitive behavior of graphene-ZnO composite film for supercapacitors", J. ELECTROANAL. CHEM., vol. 634, no. 1, 2009, pages 68 - 71, XP026500879, DOI: doi:10.1016/j.jelechem.2009.07.010 1;
ZHAO, L.; GAO, M. M.; YUE, W. B.; JIANG, Y.; WANG, Y.; REN, Y.; HU, F. Q., SANDWICH-STRUCTURED GRAPHENE-FE 0 CARBON NANOCOMPOSITES FOR HIGH-PERFORMANCE 1;
ZHOU, X. F.; HU, Z. L.; FAN, Y. Q.; CHEN, S.; DING, W. P.; XU, N. P.: "Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures", J. PHYS. CHEM. C, vol. 112, no. 31, 2008, pages 11722 - 11728, XP055352751, DOI: doi:10.1021/jp802619j 1
Zitierende Dokumente Dokumente ermitteln
Sequenzprotokoll
Prüfstoff-IPC ICP H01G 11/24
H01G 11/32
H01G 11/36
H01G 9/20
H01M 4/04
H01M 4/131
H01M 4/133
H01M 4/36
H01M 4/48