Hauptinhalt

Bibliografische Daten

Dokument US000012298234B2 (Seiten: 12)

Bibliografische Daten Dokument US000012298234B2 (Seiten: 12)
INID Kriterium Feld Inhalt
54 Titel TI [EN] Method of creating a local oscillator light beam and local oscillator source apparatus for phase-resolved spectroscopy
71/73 Anmelder/Inhaber PA MAX PLANCK GESELLSCHAFT, DE
72 Erfinder IN BONN MISCHA, DE ; GRECHKO MAKSIM, DE ; LUKAS MAX, DE ; VIETZE LAURA, DE
22/96 Anmeldedatum AD 18.02.2022
21 Anmeldenummer AN 202218275103
Anmeldeland AC US
Veröffentlichungsdatum PUB 13.05.2025
33
31
32
Priorität PRC
PRN
PRD
EP
2022054116
18.02.2022
33
31
32
PRC
PRN
PRD
EP
21158114
19.02.2021
51 IPC-Hauptklasse ICM G01N 21/31 (2006.01)
51 IPC-Nebenklasse ICS
IPC-Zusatzklasse ICA G01J 3/453 (2006.01)
IPC-Indexklasse ICI
Gemeinsame Patentklassifikation CPC G01J 2003/4534
G01J 3/10
G01J 3/4338
G01N 21/31
G01N 21/39
MCD-Hauptklasse MCM G01N 21/31 (2006.01)
MCD-Nebenklasse MCS
MCD-Zusatzklasse MCA G01J 3/453 (2006.01)
57 Zusammenfassung AB [EN] A method of creating a local oscillator light beam LO for a phase-resolved spectroscopy measurement comprises the steps of providing a first measuring light beam (1) and a second measuring light beam (2) being aligned to each other, creating the local oscillator light beam LO by an optical non-linear interaction of a first portion (1A) of the first measuring light beam (1) and a first portion (2A) of the second measuring light beam (2) in an optical nonlinear medium (20), and superimposing the local oscillator light beam LO, a second portion (1B) of the first measuring light beam (1) and a second portion (2B) of the second measuring light beam (2) with a predetermined mutual phase relationship, for providing a sample light beam (3) for the phase-resolved spectroscopy measurement. The local oscillator light beam LO and the second portions (1B, 2B) of the first and second measuring light beams (1, 2) are superimposed with a displaced Sagnac interferometer (10).
56 Entgegengehaltene Patentdokumente/Zitate,
in Recherche ermittelt
CT US020170315054A1
US020180120086A1
WO002018084552A1
56 Entgegengehaltene Patentdokumente/Zitate,
vom Anmelder genannt
CT EP000000030891B1
US000007372577B1
US000010605727B2
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
in Recherche ermittelt
CTNP Garling et al. (2019). A general approach to combine the advantages of collinear and noncollinear spectrometer designs in phase-resolved second order nonlinear spectroscopy. The Journal of Physical Chemistry, 123, 11022-11030 (Year: 2019). 0
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
vom Anmelder genannt
CTNP Beyersdorf et al. (1999). Polarization sagnac interferometer with a common-path local oscillator for heterodyne detection. J. Opt. Soc. Am. B, 16(9), 1354-1358. 1;
Courtney et al. (2014). Enhanced interferometric detection in two-dimensional spectroscopy with a sagnac interferometer. Optics Letters, 39(3), 513-516. 1;
Garling et al. (2019). A general approach to combine the advantages of collinear and noncollinear spectrometer designs in phase-resolved second order nonlinear spectroscopy. The Journal of Physical Chemistry, 123, 11022-11030. 1;
International Search Report for PCT/EP2022/054116 dated Apr. 25, 2022. 1;
Nihonyanagi et al. (2009). Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study. The Journal of Chemical Physics, 130, 204704. 1;
Sahoo et al. (2020). Quantum state interferography. Light and Matter Physics, Raman Research Institute, Bengalura 560080, India, Quantum Information and Computation Group, Harish-Chandra Research Institute, HBNI, Allahabad 211019, India. 1;
Thaemer et al. (2018). Detecting weak signals from interfaces by high accuracy phase-resolved SFG spectroscopy. Phys. Chem. Chem. Phys., 20, 25875-25882. 1;
Thaemer et al. Detecting Weak Signals from Interfaces by High Accuracy Phase-Resolved SFG Spectroscopy. arXiv:1808.04255v1 [physics.optics] Aug. 13, 2018. 1;
Xu et al. (2015). Stabilized phase detection of heterodyne sum frequency generation for interfacial studies. Optics Letters, 40(19), 4472-4475. 1;
Yamaguchi et al. (2008). Heterodyne-detected electronic sum frequency generation: “Up” versus “down” alignment of interfacial molecules. The Journal of Chemical Physics, 129, 101102. 1
Zitierende Dokumente Dokumente ermitteln
Sequenzprotokoll
Prüfstoff-IPC ICP G01J 3/10
G01J 3/433
G01N 21/31
G01N 21/39