Bibliografische Daten

Dokument US000007691616B2 (Seiten: 90)

Bibliografische Daten Dokument US000007691616B2 (Seiten: 90)
INID Kriterium Feld Inhalt
54 Titel TI [EN] Cytochrome P450 oxygenases
71/73 Anmelder/Inhaber PA CALIFORNIA INST OF TECHN, US
72 Erfinder IN ARNOLD FRANCES H, US ; FARINAS EDGARDO T, US ; GLIEDER ANTON, AT ; SCHWANEBERG ULRICH, DE
22/96 Anmeldedatum AD 07.05.2007
21 Anmeldenummer AN 80097007
Anmeldeland AC US
Veröffentlichungsdatum PUB 06.04.2010
33
31
32
Priorität PRC
PRN
PRD
US
20121302
22.07.2002
33
31
32
PRC
PRN
PRD
US
30676601
20.07.2001
33
31
32
PRC
PRN
PRD
US
30842901
27.07.2001
51 IPC-Hauptklasse ICM C12N 9/02 (2006.01)
51 IPC-Nebenklasse ICS C07H 21/04 (2006.01)
C12N 1/20 (2006.01)
C12N 15/00 (2006.01)
C12P 21/04 (2006.01)
C12Q 1/00 (2006.01)
C12Q 1/26 (2006.01)
IPC-Zusatzklasse ICA C12Q 1/68 (2006.01)
IPC-Indexklasse ICI
Gemeinsame Patentklassifikation CPC C12N 9/0071
C12P 17/02
C12P 7/02
C12P 7/04
C12P 7/16
Y02E 50/10
Y02P 20/52
MCD-Hauptklasse MCM C12N 9/02 (2006.01)
MCD-Nebenklasse MCS C07H 21/04 (2006.01)
C12N 1/20 (2006.01)
C12N 15/00 (2006.01)
C12P 17/02 (2006.01)
C12P 21/04 (2006.01)
C12P 7/02 (2006.01)
C12P 7/04 (2006.01)
C12P 7/16 (2006.01)
C12Q 1/00 (2006.01)
C12Q 1/26 (2006.01)
MCD-Zusatzklasse MCA C12Q 1/68 (2006.01)
57 Zusammenfassung AB [EN] Nucleic acids encoding cytochrome P450 variants are provided. The cytochrome P450 variants of have a higher alkane-oxidation capability, alkene-oxidation capability, and/or a higher organic-solvent resistance than the corresponding wild-type or parent cytochrome P450 enzyme. A preferred wild-type cytochrome P450 is cytochrome P450 BM-3. Preferred cytochrome P450 variants include those having an improved capability to hydroxylate alkanes and epoxidate alkenes comprising less than 8 carbons, and have amino acid substitutions corresponding to V78A, H236Q, and E252G of cytochrome P450 BM-3. Preferred cytochrome P450 variants also include those having an improved hydroxylation activity in solutions comprising co-solvents such as DMSO and THF, and have amino acid substitutions corresponding to T235A, R471A, E494K, and S1024E of cytochrome P450 BM-3.
56 Entgegengehaltene Patentdokumente/Zitate,
in Recherche ermittelt
CT
56 Entgegengehaltene Patentdokumente/Zitate,
vom Anmelder genannt
CT EP000000932670A1
EP000000505198A1
EP000000752008A1
US000004599342A
US000005605793A
US000005741691A
US000005785989A
US000005811238A
US000005830721A
US000005837458A
US000005965408A
US000006090604A
US000006498026B2
US020050037411A1
US020050202419A1
WO001989003424A1
WO001995022625A1
WO001997016553A1
WO001997020078A1
WO001997035957A1
WO001997035966A1
WO001998027230A1
WO001998031837A1
WO001998041653A1
WO001998042832A1
WO001999060096A2
WO002000000632A1
WO002000004190A1
WO002000006718A2
WO002000009679A1
WO002000018906A2
WO002000031273A2
WO002001062938A2
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
in Recherche ermittelt
CTNP
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
vom Anmelder genannt
CTNP Adam et al., "Microbial Asymmetric CH Oxidations of Simple Hydrocarbons: A Novel Monooxygenase Activity of the Topsoil Microorganism Bacillus megaterium," Eur. J. Org. Chem., 2000, pp. 2923-2926, Wiley-VCH Verlag GmbH, Weinheim, Germany. 1;
Aisaka et al., "Production of Galactose Oxidase by Gibberella fujikuroi," Agric. Biol. Chem., 1981, pp. 2311-2316, 45(10). 1;
Amaral et al., "Galactose Oxidase of Polyporus circinatus1-4," Methods in Enzymology, Carbohydrate Metabolism, 1966, pp. 87-92, vol. 9, Academic Press Inc., New York, NY, USA. 1;
Anfinsen, "Principles that Govern the Folding of Protein Chains," Science, Jul. 20, 1973, pp. 223-230, vol. 181, No. 4096, American Asso for the Advancement of Science, Washington, DC, USA. 1;
Appel et al., "A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenas and heteroarenes," Journal of Biotechnology, 2001, pp. 167-171, Elsevier Science B.V. 1;
Arkin et al., "An algorithm for protein engine ring: Simulations of recursive ensemble mutagenesis," Proc. Natl. Acad. Sci.-USA, Aug. 1992, pp. 7811-7815, vol. 89, Applied Biological Sciences. 1;
Arnold et al., "Optimizing Industrial Enzymes by Directed Evolution," Advances in Biochemical Engineering/Biotechnology, 1997, pp. 1-14, vol. 58, Springer-Verlag, Berlin, Germany. 1;
Arnold, "Design by Directed Evolution," Accounts of Chemical Research, 1998, pp. 125-131, vol. 31, No. .3, American Chemical Society. 1;
Arnold, "Engineering proteins for nonnatural environments," The FASEB Journal, Jun. 1993, pp. 744-749, vol. 7, No. 6, FASEB, Bethesda, MD, USA. 1;
Arts et al., "Hydrogen Peroxide and Oxygen in Catalytic Oxidation of Carbohydrates and Related Compounds," SYNTHESIS Journal of Synthetic Organic Chemistry, Jun. 1997, pp. 597-613. 1;
Ashraf et al., "Bacterial oxidation of propane," FEMS Microbiology Letters, 1994, pp. 1-6, Federation of European Microbiological Societies, Elsevier. 1;
Avigad et al., "The D-Galactose Oxidase of Polyporus circinatus," Journal of Biological Chemistry, Sep. 1962, pp. 2736-2743, vol. 237, No. 9, American Society of Biological Chemists, Baltimore, MD, USA. 1;
Avigad, "An NADH Coupled Assay System for Galactose Oxidase," Analytical Biochemistry, 1978, pp. 470-476, 86, Academic Press, Inc. 1;
Avigad, "Oxidation Rates of Some Desialylated Glycoproteins by Galactose Oxidase," Archives of Biochemistry and Biophysics, Jun. 1985, pp. 531-537, vol. 239, No. 2, Academic Press, Inc. 1;
Barnes, "Maximizing Expression of Eukaryotic Cytochrome P450s in Escherichia coli," Methods in Enzymology, Cytochrome P450, Part B, 1996, pp. 3-14, vol. 272, Academic Press, Inc., San Diego, CA, USA. 1;
Baron et al., "Structure and Mechanism of Galactose Oxidase," The Journal of Biological Chemistry, Sep. 23, 1994, pp. 25095-25105, vol. 269, No. 38, American Soc for Biochemistry and Molecular Biology. 1;
Benson et al., "Regulation of Membrane Peptides by the Pseudomonas Plasmid alk Regulon," Journal of Bacteriology, Dec. 1979, pp. 754-762, vol. 140, No. 3. 1;
Better et al., "Escherichia coli Secretion of an Active Chimeric Antibody Fragment," Science, May 20, 1988, pp. 1041-1043, vol. 240, American Asso for the Advancement of Science, Washington, DC, USA. 1;
Boddupalli et al., "Fatty Acid Monooxygenation by Cytochrome P-450BM-3," The Journal of Biological Chemistry, 1990, pp. 4233-4239, The American Society for Biochemistry and Molecular Biology. 1;
Boddupalli et al., "Fatty Acid Monooxygenation by P450BM-3: Product Identification and Proposed Mechanisms for the Sequential Hydroxylation Reactions," Archives of Biochemistry and Biophysics, Jan. 1992, pp. 20-28, vol. 292, No. 1, Academic Press, Inc. 1;
Borman et al., "Kinetic studies on the reactions of Fusarium galactose oxidase with five different substrates in the presence of dioxygen," Journal of Biological Inorganic Chemistry, 1997, pp. 480-487, Society of Biological Inorganic Chemistry. 1;
Bradford, "A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding," Analytical Biochemistry, pp. 248-254. 1;
Calderhead, D. et al., "Labeling of Glucose Transporters at the Cell Surface in 3T3-L1 Adipocytes," The Journal of Biological Chemistry, Sep. 5, 1988, pp. 12171-12174, vol. 263, No. 25, The American Society for Biochemistry and Molecular Biology. 1;
Calvin, N. et al., "High-Efficiency Transformation of Bacterial Cells by Electroporation," Journal of Bacteriology, Jun. 1988, pp. 2796-2801, vol. 170, No. 6, American Society for Microbiology. 1;
Cameron, A., "Two cradles for the heavy elements," Nature, Jan. 15, 1998, pp. 228-231, vol. 39. 1;
Capdevila, J. et al., "The Highly Stereoselective Oxidation of Polyunsaturated Fatty Acids by Cytochrome P450BM-3," The Journal of Biological Chemistry, Sep. 13, 1996, pp. 22663-22671, vol. 271, No. 37, The American Society for Biochemistry and Molecular Biology, Inc. 1;
Carmichael, A. et al., "Protein engineering of Bacillus megaterium CYP102," Eur. J. Biochem., 2001, pp. 3117-3125, vol. 268, FEBS. 1;
Castelli, L. et al., "High-level secretion of correctly processed beta-lactamase from Saccharomyces cerevisiae using a high-copy-number secretion vector," Gene, 1994, pp. 113-117, vol. 142, Elsevier Science B.V. 1;
Chang, C. et al., "Evolution of a cytokine using DNA family shuffling," Nature Biotechnology, Aug. 1999, pp. 793-797, vol. 17. 1;
Chang, Y. et al.., "Homology Modeling, Molecular Dynamics Simulations, and Analysis of CYP119, a P450 Enzyme from Extreme Acidothermophilic Archaeon Sulfolobus solfataricus," Biochemistry, 2000, pp. 2484-2498, vol. 39, No. 10, American Chemical Society. 1;
Chen, H. et al., "Thermal, Catalytic, Regiospecific Functionalization of Alkanes," Science, Mar 17, 2000, pp. 1995-1997, vol. 287. 1;
Chen, K. et al., "Tuning the activity of an enzyme for unusual environments: Sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide," Proc. Natl. Acad. Sci. USA, Jun. 15, 1993, pp. 5618-5622, vol. 90, No. 12. 1;
Cherry, J. et al., "Directed evolution of a fungal peroxidase," Nature Biotechnology, Apr. 1999, pp. 379-384, vol. 17, Nature America Inc., New York, NY, USA. 1;
Christians, F. et al., "Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling," Nature Biotechnology, Mar. 1999, pp. 259-264, vol. 17, Nature America Inc., New York, NY, USA. 1;
Cleland, J. et al., "Cosolvent Assisted Protein Refolding," Biotechnology, Dec. 1990, pp. 1274-1278, vol. 8. 1;
Crameri, A. et al., "Construction and evolution of antibody-phage libraries by DNA shuffling," Nature Medicine, Jan. 1996, pp. 100-106, vol. 2, No. 1. 1;
Crameri, A. et al., "Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling," Nature Biotechnology, Mar. 1996, pp. 315-319, vol. 14, Nature America Inc., New York, NY, USA. 1;
Crameri, A. et al., "Molecular evolution of an arsenate detoxification pathway by DNA shuffling," Nature Biotechnology, May 1997, pp. 436-438, vol. 15, Nature America Inc., New York, NY, USA. 1;
Dahlhoff, W. et al., "L-Glucose or D-gluco-Hexadialdose from D-Glucurono-6,3-lactone by Controlled Reductions," Angew. Chem. Int. Ed. Engl., 1980, pp. 546-547, 19 No. 7, Verlag Chemie, GmbH, Weinheim, Germany. 1;
Danon, A., et al. "Enrichment of Rat Tissue Lipids with Fatty Acids that are Prostoglandin Precursors" Biochimica et Biophysica Acta; 1975; 388:318-330. 1;
De Bernardez-Clark, E. et al., "Inclusion Bodies and Recovery of Proteins from the Aggregated State," ACS Symposium Series Protein Refolding, 199th Natl Mtg American Chemical Society, Apr. 22-27, 1990, pp. 1-20, American Chemical Society, Washington, DC, USA. 1;
Deacon, S. et al., "Enhanced Fructose Oxidase Activity in a Galactose Oxidase Variant," ChemBioChem: A European Journal of Chemical Biology, 2004, pp. 971-979, 5, Wiley-VCH Verlag GmbH & Co., Weinheim, Germany. 1;
Delagrave, S. et al., "Recursive ensemble mutagenesis," Protein Engineering, Apr. 1993, pp. 327-331, vol. 6, No. 3, Oxford University Press. 1;
Delagrave, S. et al., "Searching Sequence Space to Engineer Proteins: Exponential Ensemble Mutagenesis," Bio/Technology, Dec 1993, pp. 1548-1552, vol. 11, American Society for Cell Biology, New Orleans, LA, USA. 1;
Dordick, J., "Designing Enzymes for Use in Organic Solvents," Biotechnol. Prog., 1992, pp. 259-267, 8, American Chemical Society and American Institute of Chemical Engineers. 1;
Dower, W. et al., "High efficiency transformation of E. coli by high voltage electroporation," Nucleic Acids Research, 1988, pp. 6127-6145, vol. 16, No. 13, IRL Press Limited, Oxford, England. 1;
Farinas, E., et al., "Directed Evolution of a Cytochrome P450 Monooxygenase for Alkane Oxidation," Adv. Synth. Catal., 2001, pp. 601-606, vol. 343, No. 6-7. 1;
Fiedler, K., et al., The Role of N-Glycans in the Secretory Pathway, Cell, May 5, 1995, pp. 309-312, vol. 81, Cell Press. 1;
Fisher, M., et al., "Positional Specificity of Rabbit CYP4B1 for omega-Hydroxylation of Short-Medium Chain Fatty Acids and Hydrocarbons," Biochemical and Biophysical Research Communications, 1998, pp. 352-355, vol. 248, No. RC988842. 1;
Fox, B., et al., "Methane Monooxygenase from Methylosinus trichosporium OB3b Purification and Properties of a Three-Component System with High Specific Activity from a Type II Methanotroph," The Journal of Biological Chemistry, Jun. 15, 1989, pp. 10023-10033, vol. 264, No. 17, The American Society for Biochemistry and Molecular Biology, Inc. 1;
Fox, B., et al., "Methane Monooxygenase from Methylosinus trichosporium OB3b," Methods in Enzymology, 1990, pp. 191-202, vol. 188, Academic Press, Inc. 1;
Fruetel, J., et al., "Relationship of Active Site Topology to Substrate Specificity for Cytochrome P450terp (CYP108)," The Journal of Biological Chemistry, Nov. 18, 1994, pp. 28815-28821, vol. 269, No. 46, The American Society for Biochemistry and Molecular Biology, Inc. 1;
Gahmberg C., et al., "Nonmetabolic Radiolabeling and Taggin of Glycoconjugates," Methods in Enzymology, 1994, pp. 32-44, vol. 230, Academic Press, Inc. 1;
Gazaryan, I.G., "Heterologous Expression of Heme-Containing Peroxidases," Plant Peroxidase Newsletter, Sep. 1994, pp. 11-13, No. 4, LABPV Newsletters. 1;
Gietz, R., et al., "Studies on the Transformation of Intact Yeast Cells by the LiAc/SS-DNA/PEG Procedure," Yeast, Apr. 15, 1995, pp. 355-360, vol. 11, No. 4, John Wiley & Sons Ltd. 1;
Gillam, E., et al., "Expression of Cytochrome P450 2D6 in Escherichia coli, Purification, and Spectral and Catalytic Characterization," Archives of Biochemistry and Biophysics, Jun. 1, 1995, pp. 540-550, vol. 319, No. 2, Academic Press, Inc. 1;
Giver, L., et al., "Combinatorial Protein Design by in Vitro Recombination," Current Opinion in Chemical Biology, 1998, pp. 335-338, vol. 2, Current Biology Ltd. 1;
Giver, L., et al., "Directed Evolution of a Thermostable Esterase," Proc. Natl. Acad. Sci. USA, Oct. 1998, pp. 12809-12813, vol. 95. 1;
Goldman, E., et al., "An Algorithmically Optimized Combinatorial Library Screened by Digital Imaging Spectroscopy," Biotechnology, Dec. 1992, pp. 1557-1561, vol. 10. 1;
Graham-Lorence, S., et al., "An Active Site Substitution, F87V, Converts Cytochrome P450 BM-3 into a Regio- and Stereoselective (14S,15R)-Arachidonic Acid Epoxygenase," The Journal of Biological Chemistry, Jan. 10, 1997, pp. 1127-1135, vol. 272, No. 2, The American Society for Biochemistry and Molecular Biology, Inc. 1;
Gram, H., et al., "In Vitro Selection and Affinity Maturation of Antibodies from a Naive Combinatorial Immunoglobulin Library," Proc. Natl. Acad. Sci. USA, Apr. 1992, pp. 3576-3580, vol. 89. 1;
Green, J., et al., "Substrate Specificity of Soluble Methane Monooxygenase Mechanistic Implications," The Journal of Biological Chemistry, Oct. 25, 1989, pp. 17698-17703, vol. 264, No. 30, The American Society for Biochemistry and Molecular Biology, Inc. 1;
Griebenow, K., et al., Lyophilization-Induced Reversible Changes in the Secondary Structure of Proteins, Proc. Natl. Acad. Sci. USA, Nov. 1995, pp. 10969-10976, vol. 92. 1;
Groves, J., et al., "Models and Mechanisms of Cytochrome P450 Action," Cytochrome P450: Structure, Mechanism, and Biochemistry (Second Edition), 1995, pp. 3-48, Plenum Press, New York. 1;
Guengerich, F., et al., "Purification of Functional Recombinant P450s from Bacteria," Methods in Enzymology, 1996, pp. 35-44, vol. 272, Academic Press, Inc. 1;
Güssow, D., et al., "Direct Clone Characterization from Plaques and Colonies by the Polymerase Chain Reaction," Nucleic Acids Research, 1989, p. 4000, vol. 17, No. 10, IRL Press. 1;
Haines, D., et al., "Pivotal Role of Water in the Mechanism of P450BM-3," Biochemistry, 2001, pp. 13456-13465, vol. 40, No. 45, American Chemical Society. 1;
Hamilton, G.A., et al., "Galactose Oxidase: The Complexities of a Simple Enzyme," Oxidases and Related Redox Systems, 1973, pp. 103-124, vol. 1, University Park Press. 1;
Hamilton, G.A., et al., "Trivalent Copper, Superoxide, and Galactose Oxidase," Journal of the American Chemical Society, Mar. 15, 1978, pp. 1899-1912, vol. 100, No. 6, American Chemical Society. 1;
Hartmann, M., et al., "Selective Oxidations of Linear Alkanes with Molecular Oxygen on Molecular Sieve Catalysts-A Breakthrough?," Agnew. Chem. Int Ed. 2000, pp. 888-890, vol. 39, No. 5. 1;
Haschke, R., et al., "Calcium-Related Properties of Horseradish Peroxidase," Biochemical and Biophysical Research Communications, Feb. 28, 1978, pp. 1039-1042, vol. 80, No. 4, Academic Press, Inc. 1;
Helenius, A., "How N-linked Oligosaccharides Affect Glycoprotein Folding in the Endoplasmic Reticulum," Molecular Biology of the Cell, Mar. 1994, pp. 253-265, vol. 5, No. 3, The American Society for Cell Biology. 1;
Hermes, J., et al., "Searching Sequence Space by Definably Random Mutagenesis: Improving the Catalytic Potency of an Enzyme," Proc. Natl. Acad. Sci. USA, Jan. 1990, pp. 696-700, vol. 87. 1;
Ito, N. et al., "Crystal Structure of a Free Radical Enzyme, Galactose Oxidase," Journal of Molecular Biology, 1994, pp. 794-814, vol. 238, No. 5, Academic Press Limited. 1;
Ito, N. et al., "Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase," Nature, Mar. 7, 1991, pp. 87-90. 1;
Ito, N. et al., "X-Ray Crystallographic Studies of Cofactors in Galactose Oxidase," Methods in Enzymology, Redox-Active Amino Acids in Biology, 1995, pp. 235-262, vol. 258, Academic Press, Inc. 1;
Joo, H. et al., "A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases," Chemistry & Biology, Oct. 1999, pp. 699-706, vol. 6, No. 10. 1;
Joo, H. et al., "Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation," Nature, Jun. 17, 1999, pp. 671-673, vol. 399. 1;
Khoslat, C. et al., "Expression of Intracellular Hemoglobin Improves Protein Synthesis in Oxygen-Limited Escherichia coli," Bio/Technology, Sep. 1990, pp. 849-853, American Society for Cell Biology, New Orleans, LA, USA. 1;
Kiba, N. et al., "A post-column co-immobilized galactose oxidase/peroxidase reactor for fluorometric detection of saccharides in a liquid chromatographic system," Journal of Chromatography, 1989, pp. 183-187, vol. 463, Elsevier Science Publishes B.V., Amsterdam, The Netherlands. 1;
Kim, J. et al., "Use of 4-(Nitrobenzyl)Pyridine (4-NBP) To Test Mutagenic Potential of Slow-Reacting Epoxides, Their Corresponding Olefins, and Other Alkylating Agents," Bull. Environ. Contam. Toxicol., 1992, pp. 879-885, vol. 49, Springer-Verlag New York Inc. 1;
Klibanov, A. et al., "Stereospecific Oxidation of Aliphatic Alcohols Catalyzed by Galactose Oxidase," Biochemical and Biophysical Research Communications, 1982, pp. 804-808, vol. 108, No. 2, Academic Press, Inc. 1;
Knappik, A. et al., "Engineered turns of a recombinant antibody improve its in vivo folding," Protein Engineering, Jan. 1995, pp. 81-89, vol. 8, No. 1, Oxford University Press. 1;
Koroleva, O. et al., "Properties of Fusarium graminearum Galactose Oxidase," 1984, pp. 500-509, Plenum Publishing Corporation. 1;
Kosman, D., "Chapter 1 Galactose Oxidase," in Lontie, R., Eds., Copper Proteins and Copper Enzymes vol. II, pp. 1-26, CRC Press, Inc., Boca Raton, FL, USA. 1;
Koster, R. et al., "Organoboron Monosaccharides; XII1. Quantitative Preparation of D-gluco-Hexodialdose from Sodium D-Glucuronate or D-Glucuronic acid," Synthesis, Aug. 1982, pp. 650-652, No. 8, Georg Thieme Verlag. 1;
Kuchner, O. et al., "Directed evolution of enzyme catalysts," Biotechnology, Dec. 1997, pp. 523-530, vol. 15, Elsevier Science Ltd. 1;
Kuhn-Velten, W., "Effects of Compatible Solutes on Mammalian Cytochrome P450 Stability," 1997, pp. 132-135, Verlag der Zeitschrift für Naturforschung. 1;
Kvittingen, L. et al., "Use of Salt Hydrates to Buffer Optimal Water Level During Lipase Catalysed Synthesis in Organic Media: A Practical Procedure for Organic Chemists," Tetrahedron, 1992, pp. 2793-2802, vol. 48, No. 13, Pergamon Press Ltd., Great Britain. 1;
Leadbetter, E. R., et al. "Incorporation of Molecular Oxygen in Bacterial Cells Utilizing Hydrocarbons for Growth" Nature; Oct. 31, 1959, vol. 184; pp. 185-185. 1;
Lei, S. et al., "Characterization of the Erwinia carotovora pelB Gene and Its Product Pectate Lyase," Journal of Bacteriology, Sep. 1987, pp. 4379-4383, vol. 169, No. 9, American Society for Microbiology. 1;
Leung, D. et al., "A Method for Random Mutagenesis of a Defined DNA Segment Using a Modified Polymerase Chain Reaction," Technique, A Journal of Methods in Cell and Molecular Biology, Aug. 1989, pp. 11-15, vol. 1, No. 1, Saunders Scientific Publications. 1;
Lewis, D., "P450 Substrate Specificity and Metabolism," Cytochromes P450: Structure, Function and Mechanism, Aug. 2001, pp. 115-166, Taylor & Francis Publishers. 1;
Li, H. et al., "The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid," Nature Structural Biology, Feb. 1997, pp. 140-146, vol. 4, No. 2. 1;
Li, Q. et al., "Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant," Biochimica et Biophysica Acta, 2001, pp. 114-121, 1545, Elsevier Science B.V. 1;
Lis, M. et al., "Galactose Oxidase-Glucan Binding Domain Fusion Proteins as Targeting Inhibitors of Dental Plaque Bacteria," Antimicrobial Agents & Chemotherapy, May 1997, pp. 999-1003, vol. 41, No. 5, American Society for Microbiology. 1;
Liu, C. et al., "Sugar-containing Polyamines Prepared Using Galactose Oxidase Coupled with Chemical Reduction," J. Am. Chem. Soc., Jan. 20, 1999, pp. 466-467, vol. 121, No. 2, American Chemical Society. 1;
Mannino, S. et al., "Simultaneous Determination of Glucose and Galactose in Dairy Products by Two Parallel Amperometric Biosensors," Italian Journal of Food Science, 1999, pp. 57-65, vol. 11, No. 1, Chiriotti Editori, s.p.a., Pinerolo, Italy. 1;
Maradufu, A. et al., "A Non-Hydrogen-Bonding Role for the 4-Hydroxyl Group of D-Galactose in its Reaction with D-Galactose Oxidase," Carbohydrate Research, 1974, pp. 93-99, 32, Elsevier Scientific Publishing Company, Amsterdam, The Netherlands. 1
Zitierende Dokumente Dokumente ermitteln
Sequenzprotokoll
Prüfstoff-IPC ICP C07H 21/04
C12N 1/20
C12N 15/00
C12N 9/02
C12P 21/04
C12Q 1/00
C12Q 1/26
C12Q 1/68