54 |
Titel |
TI |
[DE] Verfahren zur Erzeugung mindestens einer Ground Truth aus der Vogelperspektive |
71/73 |
Anmelder/Inhaber |
PA |
Robert Bosch Gesellschaft mit beschränkter Haftung, 70469, Stuttgart, DE
|
72 |
Erfinder |
IN |
Guo, Ze, 14199, Berlin, DE
;
Tananaev, Denis, 71067, Sindelfingen, DE
|
22/96 |
Anmeldedatum |
AD |
22.12.2022 |
21 |
Anmeldenummer |
AN |
102022214330 |
|
Anmeldeland |
AC |
DE |
|
Veröffentlichungsdatum |
PUB |
20.07.2023 |
33 31 32 |
Priorität |
PRC PRN PRD |
DE
102022200503
20220118
|
51 |
IPC-Hauptklasse |
ICM |
G06V 20/56
(2022.01)
|
51 |
IPC-Nebenklasse |
ICS |
G06V 10/70
(2022.01)
G06V 20/70
(2022.01)
|
|
IPC-Zusatzklasse |
ICA |
|
|
IPC-Indexklasse |
ICI |
|
|
Gemeinsame Patentklassifikation |
CPC |
G01S 17/86
G01S 17/89
G01S 17/931
G06N 20/00
G06T 17/05
G06T 2207/10028
G06T 2207/20036
G06T 5/20
G06T 7/10
G06T 7/73
G06T 7/80
G06V 10/26
G06V 10/764
G06V 10/803
G06V 10/82
G06V 20/56
|
|
MCD-Hauptklasse |
MCM |
G06V 20/56
(2022.01)
|
|
MCD-Nebenklasse |
MCS |
G06V 10/70
(2022.01)
G06V 20/70
(2022.01)
|
|
MCD-Zusatzklasse |
MCA |
|
57 |
Zusammenfassung |
AB |
[DE] Die Erfindung betrifft ein Verfahren zur Generierung mindestens einer Darstellung (1) aus der Vogelperspektive, wobei das Verfahren mindestens die folgenden Schritte umfasst:a) Durchführen einer Sensordaten-Punktwolkenverdichtung (2),b) Durchführen einer Punktwolkenfilterung in einer Kameraperspektive,c) Durchführen einer Objektvervollständigung,d) Durchführen einer Vogelperspektiven-Segmentierung (3) und Generierung einer Höhenkarte (4). |
56 |
Entgegengehaltene Patentdokumente/Zitate, in Recherche ermittelt |
CT |
|
56 |
Entgegengehaltene Patentdokumente/Zitate, vom Anmelder genannt |
CT |
|
56 |
Entgegengehaltene Nichtpatentliteratur/Zitate, in Recherche ermittelt |
CTNP |
CAO, P., et al.: Multi-view frustum pointnet for object detection in autonomous driving. In: 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019. S. 3896-3899. doi: 10.1109/ICIP.2019.8803572 n; IMAD, M., Doukhi, O., Lee, D.-J.: Transfer learning based semantic segmentation for 3D object detection from point cloud. In: Sensors, 2021, 21. Jg., Nr. 12, S. 1-15. doi: 10.3390/s21123964 n; MEYER, G. P., et al.: Sensor fusion for joint 3d object detection and semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2019. S. 1-8. [online abrufbar über https://openaccess.thecvf.com/content_CVPRW_2019/papers/WAD/Meyer_Sensor_Fusion_for_Joint_3D_Object_Detection_and_Semantic_Segmentation_CVPRW_2019_paper.pdf] n; QI, C. R., et al.: Offboard 3d object detection from point cloud sequences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. S. 6134-6144. [online abrufbar über https://openaccess.thecvf.com/content/CVPR2021/papers/Qi_Offboard_3D_Object_Detection_From_Point_Cloud_Sequences_CVPR_2021_paper.pdf] n; WEN, L.-H., Jo, K.-H.: Fast and accurate 3D object detection for lidar-camera-based autonomous vehicles using one shared voxel-based backbone. In: IEEE access, 2021, 9. Jg., S. 22080-22089. doi: 10.1109/ACCESS.2021.3055491 n; YANG, Z., et al.: Ipod: Intensive point-based object detector for point cloud. In: arXiv preprint arXiv:1812.05276, 2018. S. 1-9. doi: 10.48550/arXiv.1812.05276 n
|
56 |
Entgegengehaltene Nichtpatentliteratur/Zitate, vom Anmelder genannt |
CTNP |
|
|
Zitierende Dokumente |
|
Dokumente ermitteln
|
|
Sequenzprotokoll |
|
|
|
Prüfstoff-IPC |
ICP |
G06V 10/70
G06V 20/56
G06V 20/70
|