Bibliografische Daten

Dokument DE102017129405A1 (Seiten: 27)

Bibliografische Daten Dokument DE102017129405A1 (Seiten: 27)
INID Kriterium Feld Inhalt
54 Titel TI [DE] Neue DAZA-Chelatoren als Liganden in der Leberbildgebung
71/73 Anmelder/Inhaber PA Universitätsklinikum Jena, 07743, Jena, DE
72 Erfinder IN Freesmeyer, Martin, Dr., 07749, Jena, DE ; Greiser, Julia, 07747, Jena, DE
22/96 Anmeldedatum AD 11.12.2017
21 Anmeldenummer AN 102017129405
Anmeldeland AC DE
Veröffentlichungsdatum PUB 13.06.2019
33
31
32
Priorität PRC
PRN
PRD


51 IPC-Hauptklasse ICM C07D 243/08 (2006.01)
51 IPC-Nebenklasse ICS A61K 51/00 (2006.01)
C07F 1/08 (2006.01)
C07F 5/00 (2006.01)
IPC-Zusatzklasse ICA A61K 103/10 (2006.01)
A61K 103/34 (2006.01)
IPC-Indexklasse ICI
Gemeinsame Patentklassifikation CPC A61K 2123/00
A61K 51/0482
C07D 243/08
MCD-Hauptklasse MCM C07D 243/08 (2006.01)
MCD-Nebenklasse MCS A61K 51/00 (2006.01)
C07F 1/08 (2006.01)
C07F 5/00 (2006.01)
MCD-Zusatzklasse MCA A61K 103/10 (2006.01)
A61K 103/34 (2006.01)
57 Zusammenfassung AB [DE] Die Erfindung stellt Verbindungen gemäß der allgemeinen Formel Ioder ein pharmazeutisch verträgliches Salz einer anorganischen oder organischen Säure, ein Hydrat, ein Stereoisomer oder ein Solvat davon, bereit, wobei R, R, R, R, R, R, R, R, R, R, Rund Runabhängig voneinander ausgewählt sind aus Wasserstoff und Alkoxy. Die Verbindungen der Formel I sind als Liganden die Herstellung radioaktiv markierterGa-,Cu-,Ga-,In- oderTc -Komplexe geeignet. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der Verbindungen der Formel I und der radioaktiv markierten Komplexe sowie die Verwendung der radioaktiv markierten Komplexe in bildgebenden Verfahren, wie PET/CT, insbesondere der Leber.
56 Entgegengehaltene Patentdokumente/Zitate,
in Recherche ermittelt
CT
56 Entgegengehaltene Patentdokumente/Zitate,
vom Anmelder genannt
CT US020060034773A1
WO002003008390A1
WO002006002873A2
WO002013135750A1
WO002014198478A2
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
in Recherche ermittelt
CTNP
56 Entgegengehaltene Nichtpatentliteratur/Zitate,
vom Anmelder genannt
CTNP Abdel-Magid, A. F., Carson, K. G., Harris, B. D., Maryanoff, C. A. & Shah, R. D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures. J. Org. Chem. 61, 3849-3862, doi:10.1021/JO960057X (1996) 1;
Adam, B. etal. Phenoxyl radical complexes of gallium, scandium, iron and manganese. Chem. - Eur. J. 3, 308-319, doi:10.1002/chem.19970030221 (1997) 1;
Aime, S. etal. [Gd-AAZTA]-: A New Structural Entry for an Improved Generation of MRI Contrast Agents. Inorg. Chem. 43, 7588-7590, doi:10.1021/ic0489692 (2004) 1;
Ba-Ssalamah, A. et al. MRT der Leber. Radiologe44, 1170-1184, doi:10.1007/s00117-004-1142-5 (2004) 1;
Baranyai, Z. etal. Equilibrium and kinetic properties of the lanthanoids (III) and various divalent metal complexes of the heptadentate ligand AAZTA. Chem. - Eur. J. 15, 1696-1705, doi:10.1002/chem.200801803 (2009) 1;
Baranyai, Z. etal. Equilibrium, Kinetic and Structural Studies of AAZTA Complexes with Ga3+, In3+ and Cu2+. Eur. J. Inorg. Chem. 2013, 147-162, doi:10.1002/ejic.201201108 (2013) 1;
Bartholoma, M. D., Louie, A. S., Valliant, J. F. & Zubieta, J. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chem. Rev. (Washington, DC, U. S.) 110, 2903-2920, doi:10.1021/cr1000755 (2010) 1;
Bender, M. et al. Theoretically Predicted and Experimentally Observed Relaxation Pathways of two Heterodinuclear 3d-4f Complexes. Z. Anorg. Allg. Chem. 641, 2291-2299, doi:10.1002/zaac.201500595 (2015) 1;
Boyd, E. et al. Synthesis and derivatization of N,N'-trisubstituted 1,2-diamines derived from (1R,2R)-1,2-diaminocyclohexane. Tetrahedron Lett. 46, 3479-3484, doi:10.1016/j.tetlet.2005.03.129 (2005) 1;
Caravan, P. & Orvig, C. Tripodal Aminophenolate Ligand Complexes of Aluminum(III), Gallium(III), and Indium(III) in Water. Inorg. Chem. 36, 236-248, doi:10.1021/IC961222U (1997) 1;
Choi, J. et al. Ga-68-labeled neolactosylated human serum albumin (LSA) for PET imaging of hepatic asialoglycoprotein receptor. Nucl. Med. Biol., Ahead of Print, doi:10.1016/j.nucmedbio.2014.08.009 (2014) 1;
Clevette, D. J. & Orvig, C. Comparison of ligands of differing denticity and basicity for the in vivo chelation of aluminum and gallium. Polyhedron 9, 151-161, doi:10.1016/S0277-5387(00)80564-1 (1990) 1;
Denat, F., Tripier, R., Boschetti, F., Espinosa, E. & Guilard, R. Reaction of polyamines with diethyloxalate: a convenient route for the synthesis of tetraazacycloalkanes. ARKIVOC (Gainesville, FL, U. S.), 212-233, doi:10.3998/ark.5550190.0007.415 (2006) 1;
Elemento, E. M., Parker, D., Aime, S., Gianolio, E. & Lattuada, L. Variation of water exchange dynamics with ligand structure and stereochemistry in lanthanide complexes based on 1,4-diazepine derivatives. Org. Biomol. Chem. 7, 1120-1131, doi:10.1039/b818445c (2009) 1;
Farkas, E. et al. Equilibrium, kinetic and structural properties of gallium(III)- and some divalent metal complexes formed with the new DATAm and DATA5m ligands. Chemistry (2017) 1;
Fritzberg, A. R. & Klingensmith, W. C., III. Quest for the perfect hepatobiliary radiopharmaceutical. J. Nucl. Med. 23, 543-546 (1982) 1;
Ghosh, S., Das, T., Sarma, H. D. & Banerjee, S. Preparation and preliminary bioevaluation of 68Ga-oxine in lipiodol as a potential liver imaging agent. J. Radioanal. Nucl. Chem., Ahead of Print, doi:10.1007/s10967-016-4985-0 (2016) 1;
Greiser, J. et al. Synthesis and Characterization of Galll, Inlll and Lulll Complexes of a Set of dtpa Bis-Amide Ligands. Eur. J. Inorg. Chem. 2015, 4125-4137, doi:10.1002/ejic.201500436 (2015) 1;
Greiser, J., Niksch, T., Freesmeyer, M. & Weigand, W. Investigations on the Ga(III) Complex of EOB-DTPA and Its 68Ga Radiolabeled Analogue. J Vis Exp (2016) 1;
Guanci, C. et al. Synthesis of phosphonic analogues of AAZTA = 6-Amino-6-methylperhydro-1,4-diazepine-N,N',N",N"-tetraacetic acid and relaxometric evaluation of the corresponding Gd(III) complexes as potential MRI contrast agents. Tetrahedron Lett. 56, 1994-1997, doi:10.1016/j.tetlet.2015.02.118 (2015) 1;
Gugliotta, G., Botta, M. & Tei, L. AAZTA-based bifunctional chelating agents for the synthesis of multimeric/dendrimeric MRI contrast agents. Org. Biomol. Chem. 8, 4569-4574, doi:10.1039/c0ob00096e (2010) 1;
Haubner, R. et al. Development of (68)Ga-labelled DTPA galactosyl human serum albumin for liver function imaging. Eur. J. Nucl. Med. Mol. Imaging 40, 1245-1255 (2013) 1;
Haubner, R. et al. [68Ga]NODAGA-RGD - Metabolic stability, biodistribution, and dosimetry data from patients with hepatocellular carcinoma and liver cirrhosis. Eur. J. Nucl. Med. Mol. Imaging, Ahead of Print, doi:10.1007/s00259-016-3396-3 (2016) 1;
Haubner, R. et al. [68Ga]NOTA-Galactosyl Human Serum Albumin: a Tracer for Liver Function Imaging with Improved Stability. Mol. Imaging Biol., Ahead of Print, doi:10.1007/s11307-017-1046-1 (2017) 1;
Higham, C. S. et al. Multidentate aminophenol ligands prepared with Mannich condensations. Tetrahedron Lett. 47, 4419-4423, doi:10.1016/j.tetlet.2006.04.077 (2006) 1;
Huemmer, J., Heinemann, F. W. & Meyer, K. Uranium Tetrakis-Aryloxide Derivatives Supported by Tetraazacyclododecane: Synthesis of Air-Stable, Coordinatively-Unsaturated U(IV) and U(V) Complexes. Inorg. Chem., Ahead of Print, doi:10.1021 /acs.inorgchem.6b02123 (2016) 1;
Jurisson, S., Berning, D., Jia, W. & Ma, D. Coordination compounds in nuclear medicine. Chem. Rev. 93, 1137-1156, doi:10.1021/cr00019a013 (1993) 1;
Lam, O. P., Heinemann, F. W. & Meyer, K. A new diamantane functionalized tris(aryloxide) ligand system for small molecule activation chemistry at reactive uranium complexes. C. R. Chim. 13, 803-811, doi:10.1016/j.crci.2010.03.004 (2010) 1;
Liu, S., Rettig, S. J. & Orvig, C. Polydentate ligand chemistry of Group 13 metals: effects of the size and donor selectivity of metal ions on the structures and properties of aluminum, gallium, and indium complexes with potentially heptadentate (N4O3) amine phenol ligands. Inorg. Chem. 31, 5400-5407, doi:10.1021/ic00052a015 (1992) 1;
Madsen, S. L., Welch, M. J., Motekaitis, R. J. & Martell, A. E. Gallium-68-THM2BED: a potential generator-produced tracer of myocardial perfusion for positron emission tomography. Nucl. Med. Biol. 19, 431-444, doi:10.1016/0883-2897(92)90158-U (1992) 1;
Mamedov, I., Engelmann, J., Eschenko, O., Beyerlein, M. & Logothetis, N. K. Dualfunctional probes towards in vivo studies of brain connectivity and plasticity. Chem. Commun. (Cambridge, U. K.) 48, 2755-2757, doi:10.1039/C1CC15991G (2012) 1;
Manzoni, L. et al. Synthesis of Gd and 68Ga Complexes in Conjugation with a Conformationally Optimized RGD Sequence as Potential MRI and PET Tumor-Imaging Probes. ChemMedChem 7, 1084-1093, doi:10.1002/cmdc.201200043 (2012) 1;
Mathias, C. J. et al. Targeting radiopharmaceuticals: comparative biodistribution studies of gallium and indium complexes of multidentate ligands. Nucl. Med. Biol. 15, 69-81, doi:10.1016/0883-2897(88)90163-8 (1988) 1;
Moore, D. A., Fanwick, P. E. & Welch, M. J. Synthesis, characterization, and solid-state structure of a new hexachelating ligand and its complex with gallium(III). Inorg. Chem. 28, 1504-1506, doi:10.1021/ic00307a016 (1989) 1;
Murphy, B. P. et al. Lanthanide complexes of new ditopic, tripodal macrocycles: synthetic, structural, stability and luminescence studies. Inorg. Chem. Commun. 5, 577-580, doi:10.1016/S1387-7003(02)00486-0 (2002) 1;
Nakai, H. et al. A macrocyclic tetraamine bearing four phenol groups: a new class of heptadentate ligands to provide an oxygen-sensitive luminescent Tb(III) complex with an extendable phenol pendant arm. Dalton Trans. 44, 10923-10927, doi:10.1039/C5DT00816F (2015) 1;
Nakai, H. et al. Control of Lanthanide Coordination Environment: Synthesis, Structure, and Oxygen-Sensitive Luminescence Properties of an Eight-Coordinate Tb(III) Complex. Inorg. Chem. 55, 6609-6615, doi:10.1021/acs.inorgchem.6b00800 (2016) 1;
Parker, D. & Waldron, B. P. Conformational analysis and synthetic approaches to polydentate perhydro-diazepine ligands for the complexation of gallium(III). Org. Biomol. Chem. 11, 2827-2838, doi:10.1039/c3ob40287h (2013) 1;
Parker, D., Waldron, B. P. & Yufit, D. S. Crystallographic and solution NMR structural analyses of four hexacoordinated gallium(III) complexes based on ligands derived from 6-amino-perhydro-1,4-diazepine. Dalton Trans. 42, 8001-8008, doi:10.1039/c3dt50287b (2013) 1;
Pfeifer-Leeg, M. et al. Synthesis and Characterization of GaIII, YIII, and LuIII Complexes with Etifenin and Analogues. Z. Anorg. AIIg. Chem. 642, 486-491, doi:10.1002/zaac.201600016 (2016) 1;
Price, E. W. & Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 43, 260-290, doi:10.1039/C3CS60304K (2014) 1;
Price, T. W., Greenman, J. & Stasiuk, G. J. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans., Ahead of Print, doi:10.1039/C5DT04706D (2016) 1;
Reimer, P. et al. Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology 199, 177-183, doi:10.1148/radiology.199.1.8633143 (1996) 1;
Remington's Practice of Pharmacy, 13. Ausgabe und J. of. Pharmaceutical Science & Technology, Vol. 52, Nr. 5, Sept-Okt., S. 238-311 1;
Romba, J. et al. The coordination chemistry of 1,4-diazepan-6-amine. Eur. J. Inorg. Chem., 314-328, doi:10.1002/ejic.200500690 (2006) 1;
Sahoo, S. K., Kanungo, B. K. & Baral, M. Complexation of a tripodal amine-catechol ligand tris((2,3-dihydroxybenzylamino)ethyl)amine towards Al(III), Ga(III), and In(III). Monatsh. Chem. 140, 139-145, doi:10.1007/s00706-008-0068-4 (2009) 1;
Schmidt, A.-C., Nizovtsev, A. V., Scheurer, A., Heinemann, F. W. & Meyer, K. Uraniummediated reductive conversion of CO2 to CO and carbonate in a single-vessel, closed synthetic cycle. Chem. Commun. (Cambridge, U. K.) 48, 8634-8636, doi:10.1039/c2cc34150f (2012) 1;
Schnepf, R. et al. Resonance Raman Spectroscopic Study of Phenoxyl Radical Complexes. J. Am. Chem. Soc. 120, 2352-2364, doi:10.1021/JA972269X (1998) 1;
Seemann, J. & al., e. Novel Ga-68-labeled folic acid derivatives. Journal of Labelled Compounds and Radiopharmaceuticals 56, 351 (2013) 1;
Seemann, J., Waldron, B. P., Roesch, F. & Parker, D. Approaching ‚Kit-Type‘ Labelling with 68Ga: The DATA Chelators. ChemMedChem 10, 1019-1026, doi:10.1002/cmdc.201500092 (2015) 1;
Silva, F. et al. Chemical, radiochemical and biological studies of new gallium(III) complexes with hexadentate chelators. Dalton Trans. 44, 3342-3355, doi:10.1039/C4DT02274B (2015) 1;
Stroszczynski, C. et al. Aktueller Stand der MRT-Diagnostik mit leberspezifischen Kontrastmitteln. Radiologe 44, 1185, doi:10.1007/s00117-004-1134-5 (2004) 1;
Tei, L., Gugliotta, G., Fekete, M., Kalman, F. K. & Botta, M. Mn(II) complexes of novel hexadentate AAZTA-like chelators: a solution thermodynamics and relaxometric study. Dalton Trans. 40, 2025-2032, doi:10.1039/c0dt01114b (2011) 1;
Vogl, T. J. et al. Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology200, 59-67, doi:10.1148/radiology.200.1.8657946 (1996) 1;
Vologdin, N., Rolla, G. A., Botta, M. & Tei, L. Orthogonal synthesis of a heterodimeric ligand for the development of the GdIII-GaIII ditopic complex as a potential pH-sensitive MRI/PET probe. Org. Biomol. Chem. 11, 1683-1690, doi:10.1039/c2ob27200h (2013) 1;
Wadas, T. J., Wong, E. H., Weisman, G. R. & Anderson, C. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. J. Chem. Rev. 110, 2858-2902 doi:10.1021/cr900325h. (2010) 1;
Waldron, B. P. et al. Structure and stability of hexadentate complexes of ligands based on AAZTA for efficient PET labelling with gallium-68. Chem. Commun. (Cambridge, U. K.) 49, 579-581, doi:10.1039/C2CC37544C (2013) 1;
Wang, G., Wei, Y. & Wu, K. Goblet-shaped pentanuclear lanthanide clusters assembled with a cyclen derivative ligand exhibiting slow magnetic relaxation. Dalton Trans. 45, 12734-12738, doi:10.1039/C6DT02062C (2016) 1;
Wei, Y., Wang, G. & Wu, K. First Eu(II)/Ln(III) Mixed Complex with High Oxidative Stability. Cryst. Growth Des. 15, 5288-5292, doi:10.1021/acs.cgd.5b00804 (2015) 1;
Weinmann, H. J. et al. A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn. Reson. Med. 22, 233-237, doi:10.1002/mrm.1910220214 (1991) 1;
Yamamoto, H. & Maruoka, K. Regioselective carbonyl amination using diisobutylaluminum hydride. J. Am. Chem. Soc. 103, 4186-4194, doi:10.1021/ja00404a035 (1981) 1;
Zhang, Y. et al. Substituent-directed reduction of cyclic aminals leading to two different heterocycles selectively: syntheses of functionalized nicotines and pyrido[2,3-b]azepines. Tetrahedron 71, 1930-1939, doi:10.1016/j.tet.2015.02.025 (2015) 1;
urke, B. P. et al. Final step gallium-68 radiolabelling of silica-coated iron oxide nanorods as potential PET/MR multimodal imaging agents. Faraday Discuss. 175, 59-71, doi:10.1039/C4FD00137K (2014) 1
Zitierende Dokumente Dokumente ermitteln
Sequenzprotokoll
Prüfstoff-IPC ICP A61K 51/00
C07D 243/08
C07F 1/08
C07F 5/00